login
A345380
Number of Jacobsthal-Lucas numbers m <= n.
1
0, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
0,3
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36. See Section 5.6, pp. 35, Table 7.
EXAMPLE
a(0)=0 since the least term in A014551 is 1.
a(1)=1 since A014551(0) = 2 is followed in that sequence by 1.
a(k)=2 for 2 <= k <= 4 since the first terms of A014551 are {2, 1, 5}.
MATHEMATICA
Block[{a = 1, b = -2, nn = 105, u, v = {}}, u = {2, a}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *)
{0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LinearRecurrence[{1, 2}, {2, 1}, 8] (* Michael De Vlieger, Jun 16 2021 *)
CROSSREFS
Cf. A014551, A108852 (Fibonacci), A130245 (Lucas), A130253.
Sequence in context: A108504 A036468 A334051 * A367128 A028829 A130855
KEYWORD
nonn,easy
AUTHOR
Ovidiu Bagdasar, Jun 16 2021
STATUS
approved