login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367045
G.f. satisfies A(x) = 1 - x^2 + x*A(x)^4.
1
1, 1, 3, 18, 112, 755, 5348, 39302, 296916, 2291861, 17997052, 143319918, 1154728056, 9395809374, 77099733884, 637298480966, 5301568498768, 44351526986704, 372890978840156, 3149155955471690, 26702387443603200, 227238745573918511, 1940201017862028108
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*(n-2*k)+1,k) * binomial(4*(n-2*k),n-2*k)/(3*(n-2*k)+1).
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(3*(n-2*k)+1, k)*binomial(4*(n-2*k), n-2*k)/(3*(n-2*k)+1));
CROSSREFS
Cf. A367041.
Sequence in context: A357203 A215047 A376031 * A346578 A213099 A199259
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 03 2023
STATUS
approved