login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367043
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^4.
2
1, 1, 4, 23, 144, 997, 7304, 55646, 436320, 3497846, 28538852, 236203518, 1978290648, 16735471979, 142789868112, 1227339581084, 10617748941840, 92377468226466, 807769888050640, 7095187345173620, 62574408414192220, 553881698543850337
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(3*(n-3*k)+1,k) * binomial(4*(n-3*k),n-3*k)/(3*(n-3*k)+1).
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(3*(n-3*k)+1, k)*binomial(4*(n-3*k), n-3*k)/(3*(n-3*k)+1));
CROSSREFS
Sequence in context: A162561 A277921 A020079 * A357152 A146964 A194006
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 03 2023
STATUS
approved