login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366968
a(n) = Sum_{k=3..n} floor(n/k).
5
0, 0, 1, 2, 3, 5, 6, 8, 10, 12, 13, 17, 18, 20, 23, 26, 27, 31, 32, 36, 39, 41, 42, 48, 50, 52, 55, 59, 60, 66, 67, 71, 74, 76, 79, 86, 87, 89, 92, 98, 99, 105, 106, 110, 115, 117, 118, 126, 128, 132, 135, 139, 140, 146, 149, 155, 158, 160, 161, 171, 172, 174, 179, 184
OFFSET
1,4
FORMULA
G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k) = 1/(1-x) * Sum_{k>=3} x^k/(1-x^k).
a(n) = A006218(n)-n-floor(n/2). - Chai Wah Wu, Oct 30 2023
PROG
(PARI) a(n) = sum(k=3, n, n\k);
(Python)
from math import isqrt
def A366968(n): return -(s:=isqrt(n))**2+(sum(n//k for k in range(3, s+1))<<1)+n+(n>>1) if n>3 else int(n>2) # Chai Wah Wu, Oct 30 2023
CROSSREFS
Column k=3 of A134867.
Partial sums of A023645.
Sequence in context: A025055 A288509 A283295 * A080276 A120836 A352077
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 30 2023
STATUS
approved