OFFSET
0,3
COMMENTS
a(n)/7! is the coefficient of x^7 in the Taylor expansion of the k-th iteration of sinh(x). This is most easily seen from the relation -i*sin(...sin(sin(sin(i*x)))...) = -i*sin(...sin(sin(i*sinh(x)))...) = -i*sin(...sin(i*sinh(sinh(x)))...) = ... = sinh(...sinh(sinh(sinh(x)))...).
LINKS
Jianing Song, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = binomial(n,1) + 126*binomial(n,2) + 350*binomial(n,3) = (175*n^2 - 336*n + 164)*n/3. See A366834.
G.f.: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4.
EXAMPLE
sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + ...;
sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + ...;
sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + ....
PROG
(PARI) a(n) = (175/3)*n^3 - 112*n^2 + (164/3)*n
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Oct 25 2023
STATUS
approved