login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366827
-a(n)/7! is the coefficient of x^7 in the Taylor expansion of the k-th iteration of sin(x).
2
0, 1, 128, 731, 2160, 4765, 8896, 14903, 23136, 33945, 47680, 64691, 85328, 109941, 138880, 172495, 211136, 255153, 304896, 360715, 422960, 491981, 568128, 651751, 743200, 842825, 950976, 1068003, 1194256, 1330085, 1475840, 1631871, 1798528, 1976161, 2165120, 2365755, 2578416
OFFSET
0,3
COMMENTS
a(n)/7! is the coefficient of x^7 in the Taylor expansion of the k-th iteration of sinh(x). This is most easily seen from the relation -i*sin(...sin(sin(sin(i*x)))...) = -i*sin(...sin(sin(i*sinh(x)))...) = -i*sin(...sin(i*sinh(sinh(x)))...) = ... = sinh(...sinh(sinh(sinh(x)))...).
FORMULA
a(n) = binomial(n,1) + 126*binomial(n,2) + 350*binomial(n,3) = (175*n^2 - 336*n + 164)*n/3. See A366834.
G.f.: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4.
EXAMPLE
sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + ...;
sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + ...;
sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + ....
PROG
(PARI) a(n) = (175/3)*n^3 - 112*n^2 + (164/3)*n
CROSSREFS
Cf. A366834 (main sequence), A051624 (coefficient of x^5), A285018, A285019.
Sequence in context: A218903 A333584 A349110 * A297463 A297700 A218070
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Oct 25 2023
STATUS
approved