OFFSET
1,1
EXAMPLE
128 = 2^7 is a term since it is powerful and the sum of its aliquot powerful divisors, A183097(128) - 128 = 1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
MATHEMATICA
powQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n] - n]; Select[Range[1.1*10^7], q]
PROG
(PARI) isok(n) = my(s); ispowerful(n) && (s=sumdiv(n, d, if (d<n, d*ispowerful(d)))) && (s>1) && ispowerful(s); \\ Michel Marcus, Nov 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 08 2021
STATUS
approved