login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349108
a(n) is the permanent of the n X n matrix A(n) that is defined as A[i,j,n] = (n mod 2) + abs((n + 1)/2 - i) + abs((n + 1)/2 - j).
3
1, 1, 2, 66, 292, 41100, 314736, 108446352, 1267665984, 829171609920, 13696865136000, 14718069991152000, 325942368613966080, 524455030610743115520, 14983681934750599526400, 33855616071967479729408000, 1211736134642288777186918400, 3668200144503587527675580006400
OFFSET
0,3
COMMENTS
A(n) is an n X n matrix whose elements start from 1 at the center and get higher, the more they are close to the corners (see the examples).
det(A(1)) = 1 and det(A(n)) = 0 for n > 1.
LINKS
FORMULA
a(2*n) = A349107(2*n).
EXAMPLE
For n = 5 the matrix A(5) is
5, 4, 3, 4, 5
4, 3, 2, 3, 4
3, 2, 1, 2, 3
4, 3, 2, 3, 4
5, 4, 3, 4, 5
with permanent a(5) = 41100.
For n = 6 the matrix A(6) is
5, 4, 3, 3, 4, 5
4, 3, 2, 2, 3, 4
3, 2, 1, 1, 2, 3
3, 2, 1, 1, 2, 3
4, 3, 2, 2, 3, 4
5, 4, 3, 3, 4, 5
with permanent a(6) = 314736.
MATHEMATICA
A[i_, j_, n_] := Mod[n, 2]+ Abs[(n + 1)/2 - j] +Abs[(n + 1)/2 - i]; a[n_]:=Permanent[Table[A[i, j, n], {i, n}, {j, n}]]; Join[{1}, Array[a, 17]]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, (n%2) + abs((n + 1)/2 - i) + abs((n + 1)/2 - j))); \\ Michel Marcus, Nov 08 2021
CROSSREFS
Cf. A213037 (trace of matrix A(n)), A349107.
Sequence in context: A304934 A075809 A257788 * A226409 A226338 A131472
KEYWORD
nonn
AUTHOR
Stefano Spezia, Nov 08 2021
STATUS
approved