login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of divisors of the cubefree numbers (A004709).
6

%I #12 Aug 06 2024 02:11:06

%S 1,3,4,7,6,12,8,13,18,12,28,14,24,24,18,39,20,42,32,36,24,31,42,56,30,

%T 72,32,48,54,48,91,38,60,56,42,96,44,84,78,72,48,57,93,72,98,54,72,80,

%U 90,60,168,62,96,104,84,144,68,126,96,144,72,74,114,124,140

%N The sum of divisors of the cubefree numbers (A004709).

%H Amiram Eldar, <a href="/A366440/b366440.txt">Table of n, a(n) for n = 1..10000</a>

%H Rafael Jakimczuk and Matilde Lalín, <a href="https://doi.org/10.7546/nntdm.2022.28.4.617-634">Asymptotics of sums of divisor functions over sequences with restricted factorization structure</a>, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634; p. 619, eq. (2).

%F a(n) = A000203(A004709(n)).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 15*zeta(3)/(2*Pi^2) = A082020 * A002117 / 2 = 0.913453711751... .

%F The asymptotic mean of the abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = 15/Pi^2 = 1.519817... (A082020).

%t f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]

%o (PARI) lista(max) = for(k = 1, max, my(f = factor(k), iscubefree = 1); for(i = 1, #f~, if(f[i, 2] > 2, iscubefree = 0; break)); if(iscubefree, print1(sigma(f), ", ")));

%o (Python)

%o from sympy import mobius, integer_nthroot, divisor_sigma

%o def A366440(n):

%o def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))

%o m, k = n, f(n)

%o while m != k:

%o m, k = k, f(k)

%o return divisor_sigma(m) # _Chai Wah Wu_, Aug 06 2024

%Y Cf. A000203, A004709, A358040.

%Y Cf. A002117, A082020.

%Y Similar sequences: A062822, A065764, A180114, A362986, A366439.

%K nonn,easy

%O 1,2

%A _Amiram Eldar_, Oct 10 2023