login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366397
Decimal expansion of the number whose continued fraction terms are one larger than those of Pi.
1
4, 1, 2, 4, 0, 6, 0, 1, 0, 2, 2, 8, 7, 8, 6, 5, 3, 9, 1, 6, 7, 5, 8, 5, 0, 8, 3, 2, 2, 5, 6, 8, 1, 7, 4, 9, 7, 8, 4, 2, 0, 1, 8, 3, 7, 2, 9, 7, 3, 9, 1, 3, 5, 6, 7, 7, 0, 7, 3, 4, 3, 4, 3, 5, 6, 2, 3, 1, 8, 9, 4, 5, 4, 1, 5, 8, 9, 1, 8, 0, 1, 6, 8, 3, 3, 3, 3, 1, 5, 4, 4, 2, 9, 7, 0, 6, 8, 1, 0, 3, 0, 3, 6, 0
OFFSET
1,1
LINKS
Sean A. Irvine, Java program (github)
EXAMPLE
4.12406010228786539167585... = 4 + 1/(8 + 1/(16 + 1/(2 + 1/(293 + ...)))).
Pi = 3.141592653589793238... = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...)))).
PROG
(PARI)
N = 25;
cf(v) = my(m=contfracpnqn(v)); m[1, 1]/m[2, 1];
summand(k) = (-1)^k/2^(10*k)*(-2^5/(4*k+1)-1/(4*k+3)+2^8/(10*k+1)-2^6/(10*k+3)-2^2/(10*k+5)-2^2/(10*k+7)+1/(10*k+9));
pi1 = contfrac(1/2^6*sum(k=0, N, summand(k)));
pi2 = contfrac(1/2^6*sum(k=0, N+1, summand(k)));
n = 0; while(pi1[1..n+1] == pi2[1..n+1], n++);
ap1 = cf(apply(x->x+1, pi1[1..n-1]));
ap2 = cf(apply(x->x+1, pi1[1..n]));
n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
A366397 = digits(floor(10^n*ap1));
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Rok Cestnik, Oct 08 2023
STATUS
approved