login
A366228
Expansion of e.g.f. A(x) satisfying A(x) = 1 + Integral A(x)^A(x) dx.
1
1, 1, 1, 3, 12, 68, 473, 3998, 39327, 443599, 5629807, 79486044, 1235018598, 20946691457, 385025599130, 7624623236381, 161823815625933, 3664505951884255, 88189911547566082, 2247691180645108608, 60480432646998315279, 1713328345952593367876, 50970518521542636421145
OFFSET
0,4
COMMENTS
(a(n)/(n-1)!)^(1/n) tends to 1.42011... - Vaclav Kotesovec, Nov 15 2023
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + Integral A(x)^A(x) dx.
(2) A(x) = exp( Integral A(x)^(A(x) - 1) dx ).
(3) A(x) = 1 + Series_Reversion( Integral 1/(1+x)^(1+x) dx ), where 1/(1+x)^(1+x) is the e.g.f. of A176118.
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 68*x^5/5! + 473*x^6/6! + 3998*x^7/7! + 39327*x^8/8! + 443599*x^9/9! + 5629807*x^10/10! + ...
where A(x) = 1 + Integral A(x)^A(x) dx.
RELATED SERIES.
A(x)^A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 68*x^4/4! + 473*x^5/5! + 3998*x^6/6! + 39327*x^7/7! + 443599*x^8/8! + ...
log(A(x)) = x + 2*x^3/3! + 3*x^4/4! + 32*x^5/5! + 155*x^6/6! + 1575*x^7/7! + 13573*x^8/8! + 160756*x^9/9! + 1938288*x^10/10! + ...
A(x)^(A(x) - 1) = 1 + 2*x^2/2! + 3*x^3/3! + 32*x^4/4! + 155*x^5/5! + 1575*x^6/6! + 13573*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=1); for(i=0, n, A = 1 + intformal( A^A +x*O(x^n) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=0, n, A = exp( intformal( A^(A-1) +x*O(x^n) ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A121812 A039750 A365655 * A296979 A004127 A058115
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 13 2023
STATUS
approved