login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194786 E.g.f. satisfies: A(x) = 1 + x*A(x)^A(x). 1
1, 1, 2, 12, 108, 1360, 21780, 424998, 9774912, 259012080, 7769656800, 260283596760, 9631680917760, 390185658289128, 17175153440774784, 816267894739416000, 41658264473400852480, 2272233977181361580160, 131913883517800157429760, 8121310193676734923381056 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: 1 + Series_Reversion( x * Sum_{n>=0} (-x)^n/n! * Product_{k=1..n} (k+x) ). - Paul D. Hanna, Sep 27 2014

a(n) = n!*Sum_{k=0..n-1} ((Sum_{i=k..n-1} (Stirling1(i,k)*binomial(k, n-i-1)/i!))*n^(k-1)), n > 0, a(0)=1. - Vladimir Kruchinin, Jan 24 2012

a(n) ~ n^(n-1) * (s-1)*sqrt(s/(1+(s-1)*s)) / (exp(n)*r^n), where s = 1.662886128060660201... is the root of the equation (s-1)*(1+log(s)) = 1, and r = (s-1)/s^s = 0.2845572964785024040... . - Vaclav Kotesovec, Jul 15 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1360*x^5/5! + ...

where A(x)^A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3630*x^5/5! + ...

The e.g.f. also satisfies:

(1/x)*Series_Reversion(A(x) - 1) = 1 - x*(1+x) + x^2*(1+x)*(2+x)/2! - x^3*(1+x)*(2+x)*(3+x)/3! + x^4*(1+x)*(2+x)*(3+x)*(4+x)/4! - x^5*(1+x)*(2+x)*(3+x)*(4+x)*(5+x)/5! +- ...

MATHEMATICA

Flatten[{1, Table[n!*Sum[Sum[StirlingS1[i, k]*Binomial[k, n-i-1]/i!*n^(k-1), {i, k, n-1}], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 15 2014 after Vladimir Kruchinin *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*(A+x*O(x^n))^A); n!*polcoeff(A, n)}

(Maxima) a(n):=if n=0 then 1 else (n!*sum((sum((stirling1(i, k)*binomial(k, n-i-1))/i!, i, k, n-1))*n^(k-1), k, 0, n-1)); /* Vladimir Kruchinin, Jan 24 2012 */

CROSSREFS

Sequence in context: A316704 A228173 A218652 * A179493 A193268 A235601

Adjacent sequences:  A194783 A194784 A194785 * A194787 A194788 A194789

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)