login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194786
E.g.f. satisfies: A(x) = 1 + x*A(x)^A(x).
3
1, 1, 2, 12, 108, 1360, 21780, 424998, 9774912, 259012080, 7769656800, 260283596760, 9631680917760, 390185658289128, 17175153440774784, 816267894739416000, 41658264473400852480, 2272233977181361580160, 131913883517800157429760, 8121310193676734923381056
OFFSET
0,3
FORMULA
E.g.f.: 1 + Series_Reversion( x * Sum_{n>=0} (-x)^n/n! * Product_{k=1..n} (k+x) ). - Paul D. Hanna, Sep 27 2014
a(n) = n!*Sum_{k=0..n-1} ((Sum_{i=k..n-1} (Stirling1(i,k)*binomial(k, n-i-1)/i!))*n^(k-1)), n > 0, a(0)=1. - Vladimir Kruchinin, Jan 24 2012
a(n) ~ n^(n-1) * (s-1)*sqrt(s/(1+(s-1)*s)) / (exp(n)*r^n), where s = 1.662886128060660201... is the root of the equation (s-1)*(1+log(s)) = 1, and r = (s-1)/s^s = 0.2845572964785024040... . - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1360*x^5/5! + ...
where A(x)^A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3630*x^5/5! + ...
The e.g.f. also satisfies:
(1/x)*Series_Reversion(A(x) - 1) = 1 - x*(1+x) + x^2*(1+x)*(2+x)/2! - x^3*(1+x)*(2+x)*(3+x)/3! + x^4*(1+x)*(2+x)*(3+x)*(4+x)/4! - x^5*(1+x)*(2+x)*(3+x)*(4+x)*(5+x)/5! +- ...
MATHEMATICA
Flatten[{1, Table[n!*Sum[Sum[StirlingS1[i, k]*Binomial[k, n-i-1]/i!*n^(k-1), {i, k, n-1}], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 15 2014 after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*(A+x*O(x^n))^A); n!*polcoeff(A, n)}
(Maxima) a(n):=if n=0 then 1 else (n!*sum((sum((stirling1(i, k)*binomial(k, n-i-1))/i!, i, k, n-1))*n^(k-1), k, 0, n-1)); /* Vladimir Kruchinin, Jan 24 2012 */
CROSSREFS
Sequence in context: A316704 A228173 A218652 * A339301 A179493 A193268
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2011
STATUS
approved