login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366230
Expansion of e.g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y) * exp(x*y * A(x,y)), as a triangle read by rows.
0
1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 96, 4, 0, 120, 1200, 1800, 400, 5, 0, 720, 10800, 28800, 16200, 1440, 6, 0, 5040, 105840, 441000, 470400, 119070, 4704, 7, 0, 40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0, 362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0
OFFSET
0,4
COMMENTS
A161633(n) = Sum_{k=0..n} T(n,k) for n >= 0.
A366232(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A366233(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A366234(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A366235(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
FORMULA
T(n,k) = n! * binomial(n+1, n-k)/(n+1) * (n-k)^k / k!.
Let A(x,y)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * y^k * (n-k)^k/k!.
E.g.f. A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k satisfies the following formulas.
(1) A(x,y) = 1 + x*A(x) * exp(x*y*A(x,y)).
(2) A(x,y) = (1/x) * Series_Reversion( x/(1 + x*exp(x*y)) ).
(3) A( x/(1 + x*exp(x*y)), y) = 1 + x*exp(x*y).
(4) A(x,y) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+m-y)*x*A(x,y)) for all fixed nonnegative m.
(4.a) A(x,y) = 1 + Sum{n>=1} n^(n-1) * x^n/n! * A(x,y)^n * exp(-(n-y)*x*A(x)).
(4.b) A(x,y) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+1-y)*x*A(x,y)).
(4.c) A(x,y) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+2-y)*x*A(x,y)).
(4.d) A(x,y) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+3-y)*x*A(x,y)).
(4.e) A(x,y) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+4-y)*x*A(x,y)).
EXAMPLE
E.g.f. A(x,y) = 1 + x + (2*y + 2)*x^2/2! + (3*y^2 + 18*y + 6)*x^3/3! + (4*y^3 + 96*y^2 + 144*y + 24)*x^4/4! + (5*y^4 + 400*y^3 + 1800*y^2 + 1200*y + 120)*x^5/5! + (6*y^5 + 1440*y^4 + 16200*y^3 + 28800*y^2 + 10800*y + 720)*x^6/6! + (7*y^6 + 4704*y^5 + 119070*y^4 + 470400*y^3 + 441000*y^2 + 105840*y + 5040)*x^7/7! + (8*y^7 + 14336*y^6 + 762048*y^5 + 6021120*y^4 + 11760000*y^3 + 6773760*y^2 + 1128960*y + 40320)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins
1;
1, 0;
2, 2, 0;
6, 18, 3, 0;
24, 144, 96, 4, 0;
120, 1200, 1800, 400, 5, 0;
720, 10800, 28800, 16200, 1440, 6, 0;
5040, 105840, 441000, 470400, 119070, 4704, 7, 0;
40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0;
362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0;
...
PROG
(PARI) {T(n, k) = n! * binomial(n+1, n-k)/(n+1) * (n-k)^k/k!}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 17 2023
STATUS
approved