login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366133
Triangle read by rows: coefficients in expansion of another Asveld's polynomials Pi_j(x).
0
1, 1, 1, 3, 2, 1, 8, 9, 3, 1, 50, 32, 18, 4, 1, 214, 250, 80, 30, 5, 1, 2086, 1284, 750, 160, 45, 6, 1, 11976, 14602, 4494, 1750, 280, 63, 7, 1, 162816, 95808, 58408, 11984, 3500, 448, 84, 8, 1, 1143576, 1465344, 431136, 175224, 26964, 6300, 672, 108, 9, 1, 20472504, 11435760, 7326720, 1437120, 438060, 53928, 10500, 960, 135, 10, 1
OFFSET
0,4
COMMENTS
First negative term is T(35,0) = -230450728485788167742674544892530875760640.
Conjectures: For 0 < k < p and p prime, T(p,k) == 0 (mod p).
For 0 < k < n (k odd) and n = 2^m (m natural number), T(n,k) == 0 (mod n).
LINKS
P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous part, Fib. Quart. 27 (1989), 303-309. See Table 2 p. 308.
FORMULA
T(n,k) = binomial(n,k)*A005444(n-k).
Sum_{k=1..n} (-1)^(k-1)*(k-1)!*T(n, k) = A005445(n).
E.g.f. of column k: x^k / ((1-log(1+x)-log(1+x)^2)*k!), k >= 0.
Recurrence: T(n,0) = A005444(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.
T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A039948(i,j)).
EXAMPLE
Triangle begins:
1,
1, 1,
3, 2, 1,
8, 9, 3, 1,
50, 32, 18, 4, 1,
214, 250, 80, 30, 5, 1,
2086, 1284, 750, 160, 45, 6, 1,
11976, 14602, 4494, 1750, 280, 63, 7, 1,
...
MAPLE
T := (n, k) -> binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling1(n-k, j), j=0 .. n-k): seq(print(seq(T(n, k), k = 0 .. n)), n=0 .. 9);
# second Maple program:
T := (n, k) -> add(Stirling2(j, k)/j!*add(i!*combinat[fibonacci](i-j+1)*Stirling1(n, i), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);
CROSSREFS
Cf. A000045, A005444 (col 0), A005445, A039948, A048994, A305923 (row sums).
Sequence in context: A292898 A198498 A016648 * A104552 A210803 A204144
KEYWORD
sign,tabl
AUTHOR
Mélika Tebni, Sep 30 2023
STATUS
approved