login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366072
Decimal expansion of a constant related to the asymptotics of A307399.
1
5, 8, 4, 2, 7, 8, 3, 2, 1, 4, 7, 6, 3, 5, 2, 0, 3, 2, 8, 4, 7, 3, 5, 0, 4, 2, 9, 2, 5, 3, 6, 4, 3, 5, 0, 9, 0, 3, 3, 4, 1, 7, 8, 0, 0, 7, 7, 3, 2, 8, 4, 0, 6, 1, 8, 4, 5, 7, 7, 4, 2, 4, 3, 5, 5, 8, 8, 2, 0, 3, 1, 4, 0, 9, 8, 5, 9, 2, 7, 0, 5, 3, 7, 5, 2, 1, 4, 2, 8, 3, 5, 6, 2, 2, 5, 0, 6, 4, 3, 0, 0, 1, 4, 3, 4
OFFSET
1,1
FORMULA
Equals limit n->infinity A307399(n)^(1/n).
EXAMPLE
5.84278321476352032847350429253643509033417800773284061845774243558820314...
MATHEMATICA
val = r /. FindRoot[{1 + (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] == s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s], (-4*r*s*ArcTanh[1 - 2*r*s] + s*(1 - r*s)*Log[r*s]^2 + 2*Log[1 - r*s]) / (-1 + r*s) - 2*QPolyGamma[0, 1, r*s] + ((1 - s)*Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])^2 - QPolyGamma[1, 1, r*s] + 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s] == (-1 + 1/s + Log[1 - r*s]/(s*Log[r*s]) + QPolyGamma[0, 1, r*s]/(s*Log[r*s]) + r^2*s*Derivative[0, 2][QPochhammer][r*s, r*s] / QPochhammer[r*s])*s* Log[r*s]^2}, {r, 1/6}, {s, 2}, WorkingPrecision -> 90]; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 28 2023
STATUS
approved