OFFSET
1,1
FORMULA
Equals limit n->infinity A307399(n)^(1/n).
EXAMPLE
5.84278321476352032847350429253643509033417800773284061845774243558820314...
MATHEMATICA
val = r /. FindRoot[{1 + (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] == s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s], (-4*r*s*ArcTanh[1 - 2*r*s] + s*(1 - r*s)*Log[r*s]^2 + 2*Log[1 - r*s]) / (-1 + r*s) - 2*QPolyGamma[0, 1, r*s] + ((1 - s)*Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])^2 - QPolyGamma[1, 1, r*s] + 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s] == (-1 + 1/s + Log[1 - r*s]/(s*Log[r*s]) + QPolyGamma[0, 1, r*s]/(s*Log[r*s]) + r^2*s*Derivative[0, 2][QPochhammer][r*s, r*s] / QPochhammer[r*s])*s* Log[r*s]^2}, {r, 1/6}, {s, 2}, WorkingPrecision -> 90]; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 28 2023
STATUS
approved