login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365746
Table read by antidiagonals upward: T(n,k) is the number of binary strings of length k with the property that every substring of length A070939(n) is lexicographically earlier than the binary expansion of n; n, k >= 0.
1
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 5, 2, 1, 0, 1, 2, 4, 4, 8, 2, 1, 0, 1, 2, 4, 5, 4, 13, 2, 1, 0, 1, 2, 4, 6, 7, 4, 21, 2, 1, 0, 1, 2, 4, 7, 10, 11, 4, 34, 2, 1, 0, 1, 2, 4, 8, 13, 16, 16, 4, 55, 2, 1, 0, 1, 2, 4, 8, 8, 24
OFFSET
0,8
FORMULA
G.f. for row n = 0: 1;
G.f. for row n = 1: 1/(1 - x);
G.f. for row n = 2: (1 + x)/(1 - x);
G.f. for row n = 3: (1 + x)/(1 - x - x^2);
G.f. for row n = 4: (1 + x + 2x^2)/(1 - x);
G.f. for row n = 5: (1 + x + 2x^2)/(1 - x - x^3);
G.f. for row n = 6: (1 + x + x^2)/(1 - x - x^2);
G.f. for row n = 7: (1 + x + x^2)/(1 - x - x^2 - x^3);
G.f. for row n = 8: (1 + x + 2 x^2 + 4 x^3)/(1 - x);
G.f. for row n = 9: (1 + x + 2x^2 + 4x^3)/(1 - x - x^4).
EXAMPLE
Table begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11
-----+----------------------------------------------------
0 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
3 | 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
4 | 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
5 | 1, 2, 4, 5, 7, 11, 16, 23, 34, 50, 73, 107, ...
6 | 1, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, ...
7 | 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, ...
8 | 1, 2, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
9 | 1, 2, 4, 8, 9, 11, 15, 23, 32, 43, 58, 81, ...
For (n,k) = (3,4), we see that T(3,4) = 8 because there are 8 binary strings of length k = 4 where all length A070939(3) = 2 substrings are lexicographically earlier than "11" (the binary expansion of n = 3): 0000, 0001, 0010, 0100, 0101, 1000, 1001, and 1010.
MATHEMATICA
A365746Row[s_,
numberOfTerms_] := (digits = If[s == 0, 1, Ceiling[Log[2, s + 1]]];
m = 2^(digits - 1);
transferMatrix =
If[s == 0, {{0}},
Table[If[(Ceiling[i/2] ==
j) || ((i <= s - m) && (Ceiling[i/2] == j - m/2)), 1, 0], {i,
1, m}, {j, 1, m}]];
sequence =
Table[2^k, {k, 0, digits - 1}] ~Join~
Table[MatrixPower[transferMatrix, k] // Total // Total, {k, 1,
numberOfTerms - digits}];
Take[sequence, numberOfTerms])
CROSSREFS
Cf. A000045 (row 3), A164316 (row 5), A128588 (row 6), A000073 (row 7).
Sequence in context: A239287 A305258 A053616 * A094718 A076191 A362955
KEYWORD
nonn,tabl,base
AUTHOR
Peter Kagey, Sep 17 2023
STATUS
approved