OFFSET
1,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
R. C. Baker and G. Harman, Shifted primes without large prime factors, Acta Arith. 83 (1998), no. 4, 331-361.
Paul Erdős, On the normal number of prime factors of p - 1 and some related problems concerning Euler’s phi-function, Quart J. Math 6 (1935), 205-213.
Paul Pollack, Carl Pomerance and Enrique Treviño, Sets of monotonicity for Euler's totient function, preprint. See M0(n).
Paul Pollack, Carl Pomerance and Enrique Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), no. 3, 379--398.
Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
FORMULA
Pollack et al. showed that A365737(n)-a(n) > n^0.18 for large n.
PROG
(Python)
from collections import Counter
from sympy import totient
def A365742(n): return max(Counter(totient(i) for i in range(1, n+1)).values())
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Sep 17 2023
STATUS
approved