OFFSET
1,3
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
FORMULA
a(n) = | {phi(j) : j=1..n} |.
EXAMPLE
From Michael De Vlieger, Sep 09 2023: (Start)
a(1) = 1 since phi(1) = 1 is distinct from phi(k), k < 1.
a(2) = 1 since phi(2) = phi(1).
a(3) = 2 since phi(3) = 2, distinct from phi(1) = phi(2) = 1.
a(4) = 2 since phi(4) = phi(3) = 2.
a(5) = 3 since phi(5) = 4, distinct from phi(k), k < 5, etc. (End)
MATHEMATICA
nn = 120; c[_] := False; k = 0; Reap[Do[If[! c[#], k++; c[#] = True] &[EulerPhi[i]]; Sow[k], {i, nn}]][[-1, 1]] (* Michael De Vlieger, Sep 09 2023 *)
PROG
(Python)
from sympy import totient
def A061070(n): return len({totient(i) for i in range(1, n+1)}) # Chai Wah Wu, Sep 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 28 2001
STATUS
approved