login
A365614
a(n) = number of partitions p of n such that the least multiplicity of the parts of p is a part of p.
3
0, 1, 0, 1, 3, 4, 6, 10, 13, 20, 27, 36, 52, 71, 94, 126, 170, 216, 286, 367, 473, 603, 771, 963, 1229, 1529, 1910, 2371, 2959, 3623, 4492, 5487, 6740, 8200, 10016, 12099, 14724, 17722, 21402, 25687, 30914, 36892, 44224, 52630, 62781, 74497, 88540, 104646
OFFSET
0,5
FORMULA
a(n) = A000041(n) - A365615(n).
EXAMPLE
The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], having least multiplicities 1,1,1,1,1,1,5, respectively. The partitions that include least multiplicity as a part are [4,1], [3,1,1], [2,2,1], and [2,1,1,1], so that a(5) = 4.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n];
m[p_] := Min[Map[Length, Split[p]]]
Table[Count[f[n], p_ /; MemberQ[p, m[p]]], {n, 0, z}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 17 2023
STATUS
approved