|
|
A167410
|
|
Disorderly Numbers: numbers not in A167408 (orderly numbers).
|
|
4
|
|
|
3, 4, 6, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 60, 62, 63, 64, 65, 66, 69, 70, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
3 is disorderly because there exists no K > 2=tau(3), such that {1,3} == {1,2} mod K.
|
|
MATHEMATICA
|
orderlyQ[n_] := (For[dd = Divisors[n]; tau = Length[dd]; k = 3, k <= Max[tau + 4, Last[dd] - 2], k++, If[Union[Mod[dd, k]] == Range[tau], Return[True]]]; False); Select[Range[120], !orderlyQ[#]&] (* Jean-François Alcover, Nov 03 2016 *)
|
|
CROSSREFS
|
Cf. A167409 - Very Orderly Numbers ( K = tau(N)+1 )
Cf. A167411 - Minimal K Values for the Orderly Numbers
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|