login
A365616
a(n) = number of partitions p of n such that the greatest multiplicity of the parts of p is not a part of p.
3
1, 0, 2, 2, 2, 5, 7, 11, 13, 19, 24, 37, 47, 65, 84, 112, 141, 190, 235, 308, 388, 498, 617, 789, 973, 1225, 1508, 1881, 2298, 2851, 3467, 4264, 5172, 6317, 7620, 9266, 11132, 13456, 16117, 19382, 23127, 27705, 32940, 39287, 46579, 55339, 65397, 77443, 91248
OFFSET
0,3
FORMULA
a(n) = A000041(n) - A365613(n).
EXAMPLE
The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], having greatest multiplicities 1,1,1,2,2,3,5, respectively. The partitions that do not include the greatest multiplicity as a part are [5], [3,2], [3,1,1], [2,1,1,1],and [1,1,1,1,1], so that a(5) = 5.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n];
m[p_] := Max[Map[Length, Split[p]]]
Table[Count[f[n], p_ /; ! MemberQ[p, m[p]]], {n, 0, z}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 17 2023
STATUS
approved