login
A365539
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.
1
1, 4, 1, 9, 2, 1, 16, 5, 2, 1, 25, 8, 3, 2, 1, 36, 13, 6, 3, 2, 1, 49, 18, 9, 4, 3, 2, 1, 64, 25, 12, 7, 4, 3, 2, 1, 81, 32, 17, 10, 5, 4, 3, 2, 1, 100, 41, 22, 13, 8, 5, 4, 3, 2, 1, 121, 50, 27, 16, 11, 6, 5, 4, 3, 2, 1, 144, 61, 34, 21, 14, 9, 6, 5, 4, 3, 2, 1
OFFSET
0,2
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
4, 2, 2, 2, 2, 2, 2, ...
9, 5, 3, 3, 3, 3, 3, ...
16, 8, 6, 4, 4, 4, 4, ...
25, 13, 9, 7, 5, 5, 5, ...
36, 18, 12, 10, 8, 6, 6, ...
49, 25, 17, 13, 11, 9, 7, ...
64, 32, 22, 16, 14, 12, 10, ...
...
MATHEMATICA
A[n_, k_]:=SeriesCoefficient[(1+x^k)/((1-x)^2*(1-x^k)), {x, 0, n}]; Table[A[n-k, k], {n, 0, 12}, {k, n}]//Flatten
CROSSREFS
Cf. A000027 (main diagonal and superdiagonals), A000290 (k=1), A000982 (k=2), A008810 (k=3), A008811 (k=4), A008812 (k=5), A008813 (k=6), A008814 (k=7), A008815 (k=8), A008816 (k=9), A008817 (k=10).
Cf. A365540 (antidiagonal sums).
Sequence in context: A218972 A331151 A085383 * A342446 A306744 A304526
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Sep 08 2023
STATUS
approved