login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365179
a(1) = 2; for n >= 2, a(n) = p^6 if p == 2 (mod 3), p^7 if p = 3 or p == 1 (mod 3), where p = prime(n).
2
2, 2187, 15625, 823543, 1771561, 62748517, 24137569, 893871739, 148035889, 594823321, 27512614111, 94931877133, 4750104241, 271818611107, 10779215329, 22164361129, 42180533641, 3142742836021, 6060711605323, 128100283921, 11047398519097, 19203908986159, 326940373369
OFFSET
1,1
COMMENTS
Conjecture 1: a(n) is the smallest nontrivial power of p such that there exists a finite nontrivial group whose automorphism group is of order a(n).
Conjecture 2: for n >= 2, if |Aut(G)| = a(n), then |G| = a(n)/p, where p = prime(n). Moreover, G is unique up to isomorphism if p == 2 (mod 3).
LINKS
Peter Hegarty and Desmond MacHale, Minimal odd order automorphism groups, arXiv:0905.0993 [math.GR], 2009.
EXAMPLE
By the Peter Hegarty and Desmond MacHale link we have |Aut(G)| = 3^r => |Aut(G)| = 2187 = 3^7. It seems that if |Aut(G)| = 2187, then G = SmallGroup(729,m) for m = 90, 92 or 414.
It seems that |Aut(G)| = 5^r => |Aut(G)| >= 15625 = 3^6, and |Aut(G)| = 15625 => G = SmallGroup(3125,38).
It seems that |Aut(G)| = 7^r => |Aut(G)| >= 823543 = 7^7, and |Aut(G)| = 823543 => G = SmallGroup(117649,m) for m = 199, 824, 831 through 836.
It seems that |Aut(G)| = 11^r => |Aut(G)| >= 1771561 = 11^6, and |Aut(G)| = 1771561 => G = SmallGroup(161051,40).
PROG
(PARI) a(n) = if(n==1, 2, my(p=prime(n)); if(p%3==2, p^6, p^7))
(Python)
from sympy import prime
def A365179(n): return 2 if n == 1 else (p:=prime(n))**(6 if p%3 == 2 else 7) # Chai Wah Wu, Aug 26 2023
CROSSREFS
Cf. A030516 (sixth powers of primes), A092759 (seventh powers of primes).
Sequence in context: A342294 A089981 A368480 * A028487 A073476 A051103
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Aug 25 2023
STATUS
approved