login
A365178
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).
13
1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(k,n-k) * A002293(k).
PROG
(PARI) a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2023
STATUS
approved