login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365101
Number of distinct residues of x^n (mod n^4), x=0..n^4-1.
6
1, 4, 21, 18, 101, 30, 295, 130, 487, 153, 1211, 170, 2029, 444, 1919, 1025, 4625, 732, 6499, 442, 1881, 1818, 11639, 1290, 12501, 3045, 13123, 2516, 23549, 1530, 28831, 8193, 23009, 6939, 29795, 4148, 49285, 9750, 12863, 3354, 67241, 1500, 77659, 10302, 49187, 17460, 101615
OFFSET
1,2
PROG
(PARI) a(n) = #Set(vector(n^4, x, Mod(x-1, n^4)^n)); \\ Michel Marcus, Aug 22 2023
(Python)
def A365101(n): return len({pow(x, n, n**4) for x in range(n**4)}) # Chai Wah Wu, Aug 23 2023
KEYWORD
nonn
AUTHOR
Albert Mukovskiy, Aug 21 2023
STATUS
approved