login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370979
Draw a regular n-gon and the enclosing circle, then for each pair of vertices X, Y, draw a circle with diameter XY; the union of these figures is the graph H_n; sequence gives number of edges in H_n.
6
1, 4, 21, 20, 135, 144, 553, 440, 1575, 1460, 3729, 3132, 7527, 6888, 13605, 12016, 23307, 20988, 36385, 32420, 54915, 51216, 79741, 70776, 113175, 105300, 154845, 144508, 206799, 195840, 272893, 255840, 352275, 335036, 446845, 422820, 561031, 534736, 695877, 659480, 850463, 815724
OFFSET
1,2
COMMENTS
For the numbers of vertices and regions in G_n see A358746 and A370978.
H_n is the union of the graph G_n defined in A370976 and the polygon through the initial n points.
FORMULA
a(n) = A358783(n) if n even, a(n) = A358783(n) + n if n odd.
a(n) = A358783(n) + n if n even, a(n) = A358783(n) + 3*n if n odd.
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved