OFFSET
0,1
COMMENTS
m = 40 is the next case after m = 32 where the sequence {Aut^n(C_m):n>=0} is not known to stabilize after some n. See A364904.
LINKS
G. Muller, Does Aut(Aut(...Aut(G)...)) stabilize?, MathOverflow (2009).
S. Palcoux, On the iterated automorphism groups of the cyclic groups, MathOverflow (2020).
EXAMPLE
Aut(C_40) = C_2 X C_2 X C_4, so a(1) = 16;
Aut^2(C_40) = SmallGroup(192,1493), so a(2) = 192;
Aut^3(C_40) = SmallGroup(192,1493), so a(3) = 1152.
PROG
(GAP) A365051 := function(n)
local G, i, L;
G := CyclicGroup(32);
for i in [1..n] do
G := AutomorphismGroup(G);
if i = n then return break; fi;
L := DirectFactorsOfGroup(G);
if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then
L := List(L, x->IdGroup(x));
G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available
fi; od;
return Size(G);
end;
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Jianing Song, Aug 18 2023
STATUS
approved