Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 19 2023 16:12:37
%S 40,16,192,1152,4608,18432
%N a(n) = |Aut^n(C_40)|: order of the group obtained by applying G -> Aut(G) n times to the cyclic group of order 40.
%C m = 40 is the next case after m = 32 where the sequence {Aut^n(C_m):n>=0} is not known to stabilize after some n. See A364904.
%H G. Muller, <a href="https://mathoverflow.net/q/5635/34538">Does Aut(Aut(...Aut(G)...)) stabilize?</a>, MathOverflow (2009).
%H S. Palcoux, <a href="https://mathoverflow.net/q/351593/34538">On the iterated automorphism groups of the cyclic groups</a>, MathOverflow (2020).
%e Aut(C_40) = C_2 X C_2 X C_4, so a(1) = 16;
%e Aut^2(C_40) = SmallGroup(192,1493), so a(2) = 192;
%e Aut^3(C_40) = SmallGroup(192,1493), so a(3) = 1152.
%o (GAP) A365051 := function(n)
%o local G, i, L;
%o G := CyclicGroup(32);
%o for i in [1..n] do
%o G := AutomorphismGroup(G);
%o if i = n then return break; fi;
%o L := DirectFactorsOfGroup(G);
%o if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then
%o L := List(L, x->IdGroup(x));
%o G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available
%o fi; od;
%o return Size(G);
%o end;
%Y Cf. A364904 ({Aut^n(C_32)}), A364917, A331921.
%K nonn,hard,more
%O 0,1
%A _Jianing Song_, Aug 18 2023