login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364831
Primes whose digits are prime and in nonincreasing order.
1
2, 3, 5, 7, 53, 73, 733, 773, 5333, 7333, 7753, 55333, 75533, 75553, 77773, 733333, 755333, 775553, 7553333, 7555333, 7775533, 7777753, 55555333, 55555553, 77755553, 555553333, 755555533, 773333333, 777555553, 777773333, 777775333, 777775553, 777777773
OFFSET
1,1
COMMENTS
Intersection of A028867 and A019546.
The subsequence for primes whose digits are prime and in strictly decreasing order has just six terms: 2 3 5 7 53 73 (see A177061).
MATHEMATICA
Select[Prime[Range[3100000]], AllTrue[d = IntegerDigits[#], PrimeQ] && GreaterEqual @@ d &]
PROG
(Python)
from itertools import count, islice, chain, combinations_with_replacement
from sympy import isprime
def A364831_gen(): # generator of terms
yield 2
yield from chain.from_iterable((sorted(s for d in combinations_with_replacement('753', l) if isprime(s:=int(''.join(d)))) for l in count(1)))
A364831_list = list(islice(A364831_gen(), 30)) # Chai Wah Wu, Sep 10 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
James C. McMahon, Aug 09 2023
STATUS
approved