login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364769
Numbers k for which k and the arithmetic derivative k' (A003415) are practical numbers (A005153).
0
2, 4, 8, 12, 16, 20, 28, 32, 36, 48, 64, 72, 80, 88, 96, 100, 108, 112, 128, 144, 156, 160, 176, 180, 192, 196, 200, 208, 216, 240, 252, 256, 272, 276, 288, 300, 304, 308, 320, 324, 336, 348, 352, 380, 384, 392, 396, 400, 420, 432, 448, 456, 468, 480, 496, 500
OFFSET
1,1
EXAMPLE
2 = A005153(2) and 2' = 1 = A005153(1), so 2 is a term.
8 = A005153(5) and 8' = 12 = A005153(6), so 8 is a term.
20 = A005153(9) and 20' = 24 = A005153(10), so 20 is a term.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2, 500], pracQ[#] && pracQ[d[#]] &] (* Amiram Eldar, Aug 21 2023 *)
PROG
(Magma) sk:=func<n, k|&+[Divisors(n)[i]:i in [1..k]]>; ff:=func<n|forall{k:k
in [2..#Divisors(n)]|sk(n, k-1) ge Divisors(n)[k]-1}>; f:=func<n|n le 1 select 0 else n*(&+[Factorisation(n)[i][2] /Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [2..500]|ff(n) and ff(Floor(f(n)))];
CROSSREFS
Sequence in context: A375984 A006638 A001212 * A160742 A160736 A118030
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Aug 18 2023
STATUS
approved