login
A364769
Numbers k for which k and the arithmetic derivative k' (A003415) are practical numbers (A005153).
0
2, 4, 8, 12, 16, 20, 28, 32, 36, 48, 64, 72, 80, 88, 96, 100, 108, 112, 128, 144, 156, 160, 176, 180, 192, 196, 200, 208, 216, 240, 252, 256, 272, 276, 288, 300, 304, 308, 320, 324, 336, 348, 352, 380, 384, 392, 396, 400, 420, 432, 448, 456, 468, 480, 496, 500
OFFSET
1,1
EXAMPLE
2 = A005153(2) and 2' = 1 = A005153(1), so 2 is a term.
8 = A005153(5) and 8' = 12 = A005153(6), so 8 is a term.
20 = A005153(9) and 20' = 24 = A005153(10), so 20 is a term.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2, 500], pracQ[#] && pracQ[d[#]] &] (* Amiram Eldar, Aug 21 2023 *)
PROG
(Magma) sk:=func<n, k|&+[Divisors(n)[i]:i in [1..k]]>; ff:=func<n|forall{k:k
in [2..#Divisors(n)]|sk(n, k-1) ge Divisors(n)[k]-1}>; f:=func<n|n le 1 select 0 else n*(&+[Factorisation(n)[i][2] /Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [2..500]|ff(n) and ff(Floor(f(n)))];
CROSSREFS
Sequence in context: A375984 A006638 A001212 * A160742 A160736 A118030
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Aug 18 2023
STATUS
approved