login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364767
The number of divisors of n that are practical numbers (A005153).
2
1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 5, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 4, 1, 6, 1, 2, 1, 7, 1, 2, 1, 6, 1, 4, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 5, 1, 6, 1, 2, 1, 8, 1, 2, 1, 7, 1, 4, 1, 3, 1, 2, 1, 10, 1, 2, 1, 3, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 5, 1, 6, 1, 3, 1, 2, 1, 11, 1, 2, 1, 5, 1, 3, 1, 5, 1
OFFSET
1,2
LINKS
FORMULA
a(p) = 1 for p prime, p > 2.
a(2*p) = 2 for p prime, p > 3.
a(2*3^k) = k + 2, k >= 1;
a(2*p^k) = 2, k >= 1, p prime, p >= 5.
a(2^n) = n + 1.
a(n) = Sum_{d|n} A322860(d). - Antti Karttunen, Sep 11 2023
EXAMPLE
n = 1 has only one divisor 1 = A005153(1).
n = 2 has two divisors 1 = A005153(1), 2 = A005153(2).
n = 4 has three divisors 1 = A005153(1), 2 = A005153(2), 4 = A005153(3).
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; a[n_] := DivisorSum[n, 1 &, pracQ[#] &]; Array[a, 100] (* Amiram Eldar, Aug 21 2023 *)
PROG
(Magma) sk:=func<n, k|&+[Divisors(n)[i]:i in [1..k]]>; f:=func<n|forall{k: k in [2..#Divisors(n)]|sk(n, k-1) ge Divisors(n)[k]-1}>; [#[d:d in Divisors(n)|f(d)]:n in [1..100]];
(PARI) \\ using is_A005153 from A005153;
a(n) = sumdiv(n, d, is_A005153(d)); \\ Michel Marcus, Sep 11 2023
CROSSREFS
Inverse Möbius transform of A322860.
Sequence in context: A342241 A322584 A356224 * A326154 A306248 A361788
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Aug 18 2023
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Jun 02 2024
STATUS
approved