login
A364579
Fifth Lie-Betti number of a path graph on n vertices.
1
0, 0, 1, 11, 48, 140, 329, 668, 1223, 2074, 3316, 5060, 7434, 10584, 14675, 19892, 26441, 34550, 44470, 56476, 70868, 87972, 108141, 131756, 159227, 190994, 227528, 269332, 316942, 370928, 431895, 500484, 577373, 663278, 758954
OFFSET
1,4
COMMENTS
Sequence T(n,5) in A360571.
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Path Graph.
FORMULA
a(1) = a(2) = 0, a(3) = 1, a(4) = 11, a(n) = (n^5 + 30*n^4 - 145*n^3 - 270*n^2 + 2424*n - 3360)/120 for n >= 5.
PROG
(Python)
def A364579_up_to(n):
values = [0, 0, 1, 11]
for i in range(5, n+1):
result = (i**5 + 30*i**4 - 145*i**3 - 270*i**2 + 2424*i - 3360)/120
values.append(int(result))
return values
CROSSREFS
Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007.
Sequence in context: A024530 A117066 A042984 * A008780 A211058 A239460
KEYWORD
nonn
AUTHOR
Samuel J. Bevins, Aug 14 2023
STATUS
approved