login
A364179
a(n) = (10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!).
0
1, 840, 2771340, 10754814720, 44524428808860, 190847602744995840, 835982760936614190900, 3716634993696885851422720, 16702642470437308383606668060, 75679458912906782280286032887808, 345116202503279265243707597937393840, 1581997780375359530321517073184807976960
OFFSET
0,2
COMMENTS
A295471, defined by A295471(n) = (20*n)!*n! / ((10*n)!*(8*n)!*(3*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 41). Here we are essentially considering the sequence {A295471(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
FORMULA
a(n) ~ c^n * 1 /sqrt(12*Pi*n), where c = (2^3)*(5^5)/(3^2) * sqrt(3).
a(n) = 1600*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)*(10*n - 11)*(10*n - 13)*(10*n - 17)*(10*n - 19)/(n*(3*n - 1)*(3*n - 2)*(3*n - 4)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) with a(0) = 1 and a(1) = 840.
MAPLE
seq( simplify((10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!)), n = 0..15);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 13 2023
STATUS
approved