login
A364177
a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!).
0
1, 35840, 5545451340, 991901222174720, 188242272043069768860, 36901030731039027064995840, 7383354803839076831124554790900, 1498315221854950975184507333477662720, 307213802011837003346320048243705086348060
OFFSET
0,2
COMMENTS
A295458, defined by A295458(n) = (30*n)!*(5*n)!*(4*n)! / ((15*n)!*(10*n)!*(8*n)!*(6*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 28). Here we are essentially considering the sequence {A295458(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (5*n/2)! := Gamma(1 + 5*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
FORMULA
a(n) ~ c^n * 1/sqrt(12*Pi*n), where c = (3^4)*(5^5) * sqrt(3)/2.
a(n) = 43200*(15*n - 1)*(15*n - 7)*(15*n - 11)*(15*n - 13)*(15*n - 17)*(15*n - 19)*(15*n - 23)*(15*n - 29)/(n*(n - 1)*(3*n - 2)*(3*n - 4)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) with a(0) = 1 and a(1) = 35840.
MAPLE
seq( simplify((15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!)), n = 0..15);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 13 2023
STATUS
approved