login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363795
Number of divisors of n of the form 7*k + 2.
12
0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 1
OFFSET
1,16
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-5)/(1 - x^(7*k-5)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,7) - (1 - gamma)/7 = 0.188117..., gamma(2,7) = -(psi(2/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d%7==2);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 23 2023
STATUS
approved