login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336121
a(1) = 0, and for n > 1, a(n) = [A122111(n) == 3 (mod 4)] + a(A253553(n)).
5
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 0, 3, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 1, 2, 0, 1, 0, 1, 0, 1, 0, 3, 1, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 3, 0, 2, 0, 2, 0, 2, 0, 2, 1
OFFSET
1,16
COMMENTS
Positions for the first occurrence of each n, for n >= 0, are: 1, 4, 16, 32, 144, 512, 2048, 6912, 20736, 62208, ...
LINKS
FORMULA
a(1) = 0, and for n > 1, a(n) = [A336124(n) == 3] + a(A253553(n)).
a(n) = A000120(A336120(n)).
a(n) = A292377(A122111(n)).
a(n) = A001222(n) - A336123(n).
PROG
(PARI)
A253553(n) = if(n<=2, 1, my(f=factor(n), k=#f~); if(f[k, 2]>1, f[k, 2]--, f[k, 1] = precprime(f[k, 1]-1)); factorback(f));
A336121(n) = if(1==n, 0, (3==A336124(n))+A336121(A253553(n)));
CROSSREFS
Cf. A336119 (positions of zeros).
Sequence in context: A263635 A373850 A358233 * A363795 A214332 A164734
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 17 2020
STATUS
approved