login
A363696
Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).
2
6, 27, 62, 153, 258, 545, 798, 1440, 2064, 3282, 4374, 6859, 8574, 12447, 15818, 21789, 26340, 36196, 42510, 56538, 66634, 85125, 98286, 126901, 142764, 178506, 203440, 249909, 278262, 343936, 376998, 457686, 506372, 602118, 659058, 791908, 850674, 1005129, 1094638
OFFSET
1,1
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k+5,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+5,5).
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[# + 5, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, binomial(d+5, 5));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 16 2023
STATUS
approved