login
A363697
a(n) = -n! * Sum_{d|n} (-n/d)^d / d!.
2
1, 3, 19, 47, 601, 2039, 35281, -26881, 4898881, -8104321, 439084801, 576132479, 80951270401, -913158005761, 49506372115201, -558073906790401, 6046686277632001, 79958674981785599, 2311256907767808001, -115583806104986419201
OFFSET
1,2
LINKS
FORMULA
E.g.f.: Sum_{k>0} (1 - exp(-k * x^k)).
If p is prime, a(p) = (-1)^(p+1) + p * p!.
MATHEMATICA
a[n_] := -n! * DivisorSum[n, (-n/#)^#/#! &]; Array[a, 20] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = -n!*sumdiv(n, d, (-n/d)^d/d!);
CROSSREFS
Cf. A354843.
Sequence in context: A023280 A054697 A214883 * A239449 A112627 A222185
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jun 16 2023
STATUS
approved