login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363697
a(n) = -n! * Sum_{d|n} (-n/d)^d / d!.
2
1, 3, 19, 47, 601, 2039, 35281, -26881, 4898881, -8104321, 439084801, 576132479, 80951270401, -913158005761, 49506372115201, -558073906790401, 6046686277632001, 79958674981785599, 2311256907767808001, -115583806104986419201
OFFSET
1,2
LINKS
FORMULA
E.g.f.: Sum_{k>0} (1 - exp(-k * x^k)).
If p is prime, a(p) = (-1)^(p+1) + p * p!.
MATHEMATICA
a[n_] := -n! * DivisorSum[n, (-n/#)^#/#! &]; Array[a, 20] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = -n!*sumdiv(n, d, (-n/d)^d/d!);
CROSSREFS
Cf. A354843.
Sequence in context: A023280 A054697 A214883 * A239449 A112627 A222185
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jun 16 2023
STATUS
approved