login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363574
Expansion of g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function.
2
1, 2, 11, 70, 485, 3586, 27702, 221044, 1807751, 15073208, 127658948, 1095160206, 9496825919, 83109648780, 733063257227, 6510317010502, 58166005554886, 522446273512866, 4714846241261093, 42730135199777198, 388741207648594732, 3548875263271057666, 32500492203726887011
OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
Conjectures:
(1) [x^n/n] log(A(x)) == 0 (mod 2) for n >= 1,
(2) [x^n/n] log(A(x)) == 2 (mod 4) iff n is a square or twice a square (A028982).
LINKS
FORMULA
Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas; here theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2).
(1) theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
(2) theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*A(x)*x^n)^(n+1).
(3) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - x^n)^(n-1).
(4) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*A(x)*x^n)^(n+1).
(5) 0 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*x^n*A(x))^n.
a(n) ~ c * d^n / n^(3/2), where d = 9.7945249252767370556269070948885577825904333080336078... and c = 0.5596294216531106654141949766112236966734018523053... - Vaclav Kotesovec, Nov 18 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 70*x^3 + 485*x^4 + 3586*x^5 + 27702*x^6 + 221044*x^7 + 1807751*x^8 + 15073208*x^9 + 127658948*x^10 + ...
By definition, theta_4(x) = P(x) + Q(x) where
theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 - 2*x^49 + ...
P(x) = x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + x^5*(2*A(x) - x^5)^4 + x^6*(2*A(x) - x^6)^5 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...
Q(x) = 1/(2*A(x) - 1) + x/(1 - 2*A(x)*x)^2 - x^4/(1 - 2*A(x)*x^2)^3 + x^9/(1 - 2*A(x)*x^3)^4 - x^16/(1 - 2*A(x)*x^4)^5 + ... + (-1)^(n+1)*x^(n^2)/(1 - 2*A(x)*x^n)^(n+1) + ...
Explicitly,
P(x) = x + 2*x^2 + 8*x^3 + 45*x^4 + 308*x^5 + 2222*x^6 + 16920*x^7 + 133428*x^8 + 1081337*x^9 + 8950618*x^10 + ...
Q(x) = 1 - 3*x - 2*x^2 - 8*x^3 - 43*x^4 - 308*x^5 - 2222*x^6 - 16920*x^7 - 133428*x^8 - 1081339*x^9 + ...
RELATED SERIES.
It appears that the coefficients of log(A(x)) are all even:
log(A(x)) = 2*x + 18*x^2/2 + 152*x^3/3 + 1298*x^4/4 + 11432*x^5/5 + 102528*x^6/6 + 931968*x^7/7 + 8554698*x^8/8 + 79116722*x^9/9 + ... + A363568(n)*x^n/n + ...
SPECIFIC VALUES.
A(1/10) = 2.265719721251888941080447803329772146410479668...
A(-exp(-Pi)) = 0.92975039129846529364480115642201528102246496...
A(-exp(-2*Pi)) = 0.99630302525172375553562043431958560512563348...
A(exp(-Pi)) = 1.11512759518076350005641735660471754886478511...
where related values are
theta_4(-exp(-Pi)) = Pi^(1/4)/gamma(3/4),
theta_4(exp(-Pi)) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).
For example, we have
Sum_{n=-oo..+oo} exp(-n*Pi) * (2*A(exp(-Pi)) - exp(-n*Pi))^(n-1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)) = 0.91357913815611682...
also,
Sum_{n=-oo..+oo} (-1)^(n+1) * exp(-n^2*Pi) / (1 - 2*A(exp(-Pi))*exp(-n*Pi))^(n+1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).
PROG
(PARI) {theta_4(m) = sum(n=-sqrtint(m+1), sqrtint(m+1), (-1)^n * x^(n^2) + x*O(x^m))}
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-theta_4(#A) + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A363568 (log(A(x))), A357227, A002448 (theta_4), A028982.
Sequence in context: A361410 A229230 A135166 * A118347 A250887 A371577
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2023
STATUS
approved