login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function.
2

%I #17 Nov 18 2023 07:58:10

%S 1,2,11,70,485,3586,27702,221044,1807751,15073208,127658948,

%T 1095160206,9496825919,83109648780,733063257227,6510317010502,

%U 58166005554886,522446273512866,4714846241261093,42730135199777198,388741207648594732,3548875263271057666,32500492203726887011

%N Expansion of g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function.

%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

%C Conjectures:

%C (1) [x^n/n] log(A(x)) == 0 (mod 2) for n >= 1,

%C (2) [x^n/n] log(A(x)) == 2 (mod 4) iff n is a square or twice a square (A028982).

%H Paul D. Hanna, <a href="/A363574/b363574.txt">Table of n, a(n) for n = 0..400</a>

%F Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas; here theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2).

%F (1) theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).

%F (2) theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*A(x)*x^n)^(n+1).

%F (3) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - x^n)^(n-1).

%F (4) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*A(x)*x^n)^(n+1).

%F (5) 0 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^n.

%F (6) 0 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*x^n*A(x))^n.

%F a(n) ~ c * d^n / n^(3/2), where d = 9.7945249252767370556269070948885577825904333080336078... and c = 0.5596294216531106654141949766112236966734018523053... - _Vaclav Kotesovec_, Nov 18 2023

%e G.f.: A(x) = 1 + 2*x + 11*x^2 + 70*x^3 + 485*x^4 + 3586*x^5 + 27702*x^6 + 221044*x^7 + 1807751*x^8 + 15073208*x^9 + 127658948*x^10 + ...

%e By definition, theta_4(x) = P(x) + Q(x) where

%e theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 - 2*x^49 + ...

%e P(x) = x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + x^5*(2*A(x) - x^5)^4 + x^6*(2*A(x) - x^6)^5 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...

%e Q(x) = 1/(2*A(x) - 1) + x/(1 - 2*A(x)*x)^2 - x^4/(1 - 2*A(x)*x^2)^3 + x^9/(1 - 2*A(x)*x^3)^4 - x^16/(1 - 2*A(x)*x^4)^5 + ... + (-1)^(n+1)*x^(n^2)/(1 - 2*A(x)*x^n)^(n+1) + ...

%e Explicitly,

%e P(x) = x + 2*x^2 + 8*x^3 + 45*x^4 + 308*x^5 + 2222*x^6 + 16920*x^7 + 133428*x^8 + 1081337*x^9 + 8950618*x^10 + ...

%e Q(x) = 1 - 3*x - 2*x^2 - 8*x^3 - 43*x^4 - 308*x^5 - 2222*x^6 - 16920*x^7 - 133428*x^8 - 1081339*x^9 + ...

%e RELATED SERIES.

%e It appears that the coefficients of log(A(x)) are all even:

%e log(A(x)) = 2*x + 18*x^2/2 + 152*x^3/3 + 1298*x^4/4 + 11432*x^5/5 + 102528*x^6/6 + 931968*x^7/7 + 8554698*x^8/8 + 79116722*x^9/9 + ... + A363568(n)*x^n/n + ...

%e SPECIFIC VALUES.

%e A(1/10) = 2.265719721251888941080447803329772146410479668...

%e A(-exp(-Pi)) = 0.92975039129846529364480115642201528102246496...

%e A(-exp(-2*Pi)) = 0.99630302525172375553562043431958560512563348...

%e A(exp(-Pi)) = 1.11512759518076350005641735660471754886478511...

%e where related values are

%e theta_4(-exp(-Pi)) = Pi^(1/4)/gamma(3/4),

%e theta_4(exp(-Pi)) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).

%e For example, we have

%e Sum_{n=-oo..+oo} exp(-n*Pi) * (2*A(exp(-Pi)) - exp(-n*Pi))^(n-1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)) = 0.91357913815611682...

%e also,

%e Sum_{n=-oo..+oo} (-1)^(n+1) * exp(-n^2*Pi) / (1 - 2*A(exp(-Pi))*exp(-n*Pi))^(n+1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).

%o (PARI) {theta_4(m) = sum(n=-sqrtint(m+1),sqrtint(m+1), (-1)^n * x^(n^2) + x*O(x^m))}

%o {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-theta_4(#A) + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A363568 (log(A(x))), A357227, A002448 (theta_4), A028982.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 10 2023