login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363565
G.f. satisfies A(x) = exp( Sum_{k>=1} (2 * (-1)^k + A(x^k)) * x^k/k ).
2
1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 2, 1, 3, 5, 4, 4, 10, 13, 11, 16, 30, 34, 35, 58, 91, 99, 123, 200, 275, 315, 437, 671, 869, 1065, 1548, 2239, 2848, 3730, 5446, 7530, 9699, 13273, 19056, 25730, 33947, 47463, 66796, 89565, 120976, 170033, 235524
OFFSET
0,14
FORMULA
A(x) = B(x)/(1 + x)^2 where B(x) is the g.f. of A363567.
A(x) = Sum_{k>=0} a(k) * x^k = 1/(1+x)^2 * 1/Product_{k>=0} (1-x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( 2 * (-1)^k + Sum_{d|k} d * a(d-1) ) * a(n-k).
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (2*(-1)^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);
CROSSREFS
Cf. A363567.
Sequence in context: A344583 A349414 A257006 * A139687 A188181 A064581
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 10 2023
STATUS
approved