login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363563
Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} x^n * A(x)^(2*n) / (1 + x^(n+1)*A(x)^3).
3
1, 2, 11, 84, 738, 7029, 70570, 735401, 7879118, 86249454, 960434270, 10845322135, 123896322956, 1429327711980, 16628329185358, 194858230552674, 2297972689389087, 27252117638208701, 324797817830706494, 3888255542301372866, 46733817274361827340, 563736664663891455990
OFFSET
0,2
COMMENTS
The g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1-q*r^n)) ;
here, p = x*A(x)^2, q = -x*A(x)^3, and r = x.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) 1 = Sum_{n>=0} x^n * A(x)^(2*n) / (1 + x^(n+1)*A(x)^3).
(2) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(3*n) / (1 - x^(n+1)*A(x)^2).
(3) x = Sum_{n>=1} (-1)^(n-1) * x^(n^2) * A(x)^(5*(n-1)) * (1 + x^(2*n)*A(x)^5) / ((1 - x^n*A(x)^2)*(1 + x^n*A(x)^3)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 84*x^3 + 738*x^4 + 7029*x^5 + 70570*x^6 + 735401*x^7 + 7879118*x^8 + 86249454*x^9 + 960434270*x^10 + ...
where
1 = 1/(1 + x*A(x)^3) + x*A(x)^2/(1 + x^2*A(x)^3) + x^2*A(x)^4/(1 + x^3*A(x)^3) + x^3*A(x)^6/(1 + x^4*A(x)^3) + x^4*A(x)^8/(1 + x^5*A(x)^3) + ...
also,
1 = 1/(1 - x*A(x)^2) - x*A(x)^3/(1 - x^2*A(x)^2) + x^2*A(x)^6/(1 - x^3*A(x)^2) - x^3*A(x)^9/(1 - x^4*A(x)^2) + x^4*A(x)^12/(1 - x^5*A(x)^2) -+ ...
PROG
(PARI) {a(n, k=3) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(-1 + sum(n=0, #A, x^n * Ser(A)^((k-1)*n) / (1 + x^(n+1)*Ser(A)^k ) ), #A)); A[n+1]}
for(n=0, 40, print1(a(n, 3), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2023
STATUS
approved