The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A363563 Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} x^n * A(x)^(2*n) / (1 + x^(n+1)*A(x)^3). 3
 1, 2, 11, 84, 738, 7029, 70570, 735401, 7879118, 86249454, 960434270, 10845322135, 123896322956, 1429327711980, 16628329185358, 194858230552674, 2297972689389087, 27252117638208701, 324797817830706494, 3888255542301372866, 46733817274361827340, 563736664663891455990 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The g.f. A(x) of this sequence is motivated by the following identity: Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1-q*r^n)) ; here, p = x*A(x)^2, q = -x*A(x)^3, and r = x. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas. (1) 1 = Sum_{n>=0} x^n * A(x)^(2*n) / (1 + x^(n+1)*A(x)^3). (2) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(3*n) / (1 - x^(n+1)*A(x)^2). (3) x = Sum_{n>=1} (-1)^(n-1) * x^(n^2) * A(x)^(5*(n-1)) * (1 + x^(2*n)*A(x)^5) / ((1 - x^n*A(x)^2)*(1 + x^n*A(x)^3)). EXAMPLE G.f.: A(x) = 1 + 2*x + 11*x^2 + 84*x^3 + 738*x^4 + 7029*x^5 + 70570*x^6 + 735401*x^7 + 7879118*x^8 + 86249454*x^9 + 960434270*x^10 + ... where 1 = 1/(1 + x*A(x)^3) + x*A(x)^2/(1 + x^2*A(x)^3) + x^2*A(x)^4/(1 + x^3*A(x)^3) + x^3*A(x)^6/(1 + x^4*A(x)^3) + x^4*A(x)^8/(1 + x^5*A(x)^3) + ... also, 1 = 1/(1 - x*A(x)^2) - x*A(x)^3/(1 - x^2*A(x)^2) + x^2*A(x)^6/(1 - x^3*A(x)^2) - x^3*A(x)^9/(1 - x^4*A(x)^2) + x^4*A(x)^12/(1 - x^5*A(x)^2) -+ ... PROG (PARI) {a(n, k=3) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(-1 + sum(n=0, #A, x^n * Ser(A)^((k-1)*n) / (1 + x^(n+1)*Ser(A)^k ) ), #A)); A[n+1]} for(n=0, 40, print1(a(n, 3), ", ")) CROSSREFS Cf. A363562, A363564, A340329, A340355. Sequence in context: A104086 A143140 A191805 * A279202 A086406 A158098 Adjacent sequences: A363560 A363561 A363562 * A363564 A363565 A363566 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 19 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 04:26 EDT 2024. Contains 373468 sequences. (Running on oeis4.)