login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363365
Array read by ascending antidiagonals: A(1, k) = k; for n > 1, A(n, k) = (k + 1)*A(n-1, k) + k + 1 - n, with k > 0.
1
1, 2, 2, 3, 7, 3, 4, 21, 14, 4, 5, 62, 57, 23, 5, 6, 184, 228, 117, 34, 6, 7, 549, 911, 586, 207, 47, 7, 8, 1643, 3642, 2930, 1244, 333, 62, 8, 9, 4924, 14565, 14649, 7465, 2334, 501, 79, 9, 10, 14766, 58256, 73243, 44790, 16340, 4012, 717, 98, 10
OFFSET
1,2
FORMULA
A(n, k) = ((k - 1)*(k + 1)^(n+1) + k*n - k^2 + 1)/k^2.
O.g.f. of k-th column: x*(k - (k + 1)*x)/((1 - x)^2*(1 - (k + 1)*x)).
E.g.f. of k-th column: exp(x)*((k^2 - 1)*(exp(k*x) - 1) + k*x)/k^2.
A(2, n) = A008865(n+1).
EXAMPLE
The array begins:
1, 2, 3, 4, 5, ...
2, 7, 14, 23, 34, ...
3, 21, 57, 117, 207, ...
4, 62, 228, 586, 1244, ...
5, 184, 911, 2930, 7465, ...
6, 549, 3642, 14649, 44790, ...
...
MATHEMATICA
A[n_, k_]:=((k-1)*(k+1)^(n+1)+k*n-k^2+1)/k^2; Table[A[n-k+1, k], {n, 10}, {k, n}]//Flatten (* or *)
A[n_, k_]:=SeriesCoefficient[x*(k-(k+1)*x)/((1-x)^2*(1-(k+1)*x)), {x, 0, n}]; Table[A[n-k+1, k], {n, 10}, {k, n}]//Flatten (* or *)
A[n_, k_]:=n!SeriesCoefficient[Exp[x]((k^2-1)(Exp[k x]-1)+k x)/k^2, {x, 0, n}]; Table[A[n-k+1, k], {n, 10}, {k, n}]//Flatten
CROSSREFS
Cf. A000027 (n=1 or k=1), A008865, A051846 (diagonal), A064017 (k=9), A353094 (k=2), A353095 (k=3), A353096 (k=4), A353097 (k=5), A353098 (k=6), A353099 (k=7), A353100 (k=8), A363366 (antidiagonal sums).
Sequence in context: A296019 A134232 A123934 * A208151 A203362 A368219
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 29 2023
STATUS
approved