login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363309
Expansion of g.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
5
1, 1, 8, 67, 590, 5403, 51034, 494268, 4886794, 49153835, 501631980, 5182767291, 54115252508, 570206217940, 6055948422280, 64765311313944, 696876526961130, 7539151412082315, 81957518070961472, 894826829565106185, 9808173152466891270, 107888887505651377475
OFFSET
0,3
COMMENTS
Compare the g.f. A(x) = F(x*F(x)^5) to F(-x*F(x)^5) = 1/F(x), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Conjecture: given A(x) = F(x*F(x)^(2*n-1)) where F(x) = 1 + x*F(x)^n, let B(x) = A(x*B(x)^(n-1)), then ((B(x) - 1)/x)^(1/(2*n-1)) is an integer series for n >= 1. Incidentally, the function A(x) = F(x*F(x)^(2*n-1)) is interesting because F(-x*F(x)^(2*n-1)) = 1/F(x) when F(x) = 1 + x*F(x)^n. This sequence illustrates the case for n = 3; for n = 2, see A363308.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, F(x) is the g.f. of A001764.
(1) A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3.
(2) A(x) = B(x/A(x)^2) where B(x) = A(x*B(x)^2) = F( x*B(x)^2 * F(x*B(x)^2)^5 ) is the g.f. of A363310.
(3) a(n) = Sum_{k=1..n} 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) for n > 0, with a(0) = 1.
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 67*x^3 + 590*x^4 + 5403*x^5 + 51034*x^6 + 494268*x^7 + 4886794*x^8 + 49153835*x^9 + 501631980*x^10 + ...
such that A(x) = F(x*F(x)^5) where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^2) which begins
B(x) = 1 + x + 10*x^2 + 120*x^3 + 1620*x^4 + 23560*x^5 + 360352*x^6 + 5714800*x^7 + 93129840*x^8 + ... + A363310(n)*x^n + ...
then
( (B(x) - 1)/x )^(1/5) = 1 + 2*x + 16*x^2 + 180*x^3 + 2360*x^4 + 33760*x^5 + 510928*x^6 + 8043440*x^7 + ... + A363311(n)*x^n + ...
is an integer series.
PROG
(PARI) {a(n) = if(n==0, 1, sum(k=1, n, 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) ) )}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* G.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 */
{a(n) = my(F = 1); for(i=1, n, F = 1 + x*F^3 + x*O(x^n));
polcoeff( subst(F, x, x*F^5), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 29 2023
STATUS
approved