login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304073
Number of simple connected graphs with n nodes rooted at one oriented non-edge.
3
0, 0, 1, 8, 67, 701, 10047, 218083, 7758105, 478466565, 52762737260, 10566937121191, 3876933205880431, 2621875289142578194, 3285187439267316978728, 7662096100649423384254265, 33405651855362295512020765765, 273319227135047244053866187609854
OFFSET
1,4
LINKS
FORMULA
a(n) + A304072(n) = A304074(n).
G.f.: B(x)/G(x) - (x*C(x)/G(x))^2, where B(x) is the g.f. of A304069, C(x) is the g.f. of A000666 and G(x) is the g.f. of A000088. - Andrew Howroyd, Sep 07 2019
EXAMPLE
a(3)=1: no contribution from the triangle graph; one case of joining the leaves of the linear graph.
a(4)=8: we start from the 6 cases of non-oriented non-edges of A304071 and note two geometries where the orientation makes a difference: for the triangular graph with a protruding edge the orientation matters (to or from the leaf), and also for the linear graph with 4 nodes (to or from the leaf).
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
S(n, r)={my(t=#r+1); vector(n+1, n, if(n<t, 0, my(s=0); forpart(p=n-t, s+=permcount(p)*(2^(edges(p))*(2^cross(r, p)))); s/(n-t)!))}
seq(n)={my(g=Ser(S(n, []))); Vec(Ser(S(n, [1, 1]))/g - (Ser(S(n, [1]))/g)^2, -n)} \\ Andrew Howroyd, Sep 07 2019
CROSSREFS
Cf. A001349 (not rooted), A304069 (not necessarily connected).
Sequence in context: A152055 A363309 A000434 * A250258 A192091 A050841
KEYWORD
nonn
AUTHOR
Brendan McKay, May 05 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 07 2019
STATUS
approved