login
A363151
a(n) = denominator(Sum_{j=0..n} Bernoulli(j, 1) * Bernoulli(n - j, 1)).
4
1, 1, 12, 6, 180, 30, 630, 42, 2100, 30, 3465, 66, 6306300, 2730, 30030, 6, 2187900, 510, 101846745, 798, 355655300, 330, 133855722, 138, 121808707020, 2730, 10140585, 6, 194090796900, 870, 46329473220030, 14322, 4870754760300, 510, 300840735195, 6, 384913687052594700
OFFSET
0,3
COMMENTS
Conjecture: a(n) is cubefree. (An integer is cubefree if it is not divisible by the cube of a prime number.)
FORMULA
Let r(n) denote the rational form of this sequence.
r(2*n + 1) = A164555(2*n)/A027642(2*n) = Bernoulli(2*n, 1).
r(2*n) = A363153(n)/A363152(n).
EXAMPLE
r(n) = 1, 1, 7/12, 1/6, -7/180, -1/30, 23/630, 1/42, -121/2100, -1/30, 481/3465, 5/66, ...
MAPLE
A363151 := n -> denom(add(bernoulli(j, 1) * bernoulli(n - j, 1), j = 0..n)):
seq(A363151(n), n = 0..36);
MATHEMATICA
Table[Denominator[Sum[BernoulliB[j, 1] * BernoulliB[n-j, 1], {j, 0, n}]], {n, 0, 30}] (* Vaclav Kotesovec, May 19 2023 *)
CROSSREFS
Cf. A363150 (numerator), A164555/A027642 (Bernoulli), A363153/A363152.
Sequence in context: A038332 A093763 A002548 * A359632 A364135 A305939
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, May 18 2023
STATUS
approved