The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A363041 Triangle read by rows: T(n,k) = Stirling2(n+1,k)/binomial(k+1,2) if n-k is even, else 0 (1 <= k <= n). 2
 1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 1, 0, 15, 0, 1, 0, 21, 0, 35, 0, 1, 1, 0, 161, 0, 70, 0, 1, 0, 85, 0, 777, 0, 126, 0, 1, 1, 0, 1555, 0, 2835, 0, 210, 0, 1, 0, 341, 0, 14575, 0, 8547, 0, 330, 0, 1, 1, 0, 14421, 0, 91960, 0, 22407, 0, 495, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS A companion triangle to the triangle of Hultman numbers A164652. The triangle of Hultman numbers can be constructed from the triangle of Stirling cycle numbers ( |A008275(n,k)| )n,k>=1 by removing the triangular number factor n*(n-1)/2 from every other entry in the n-th row (n >= 2) and setting the remaining entries to 0. Here we carry out the analogous construction starting with the triangle of Stirling numbers of the second kind A008277, but now removing the triangular number factor k*(k+1)/2 from every other entry in the k-th column and setting the remaining entries to 0. Do these numbers have a combinatorial interpretation? LINKS Table of n, a(n) for n=1..66. FORMULA Let P(n,x) = (1 - x)*(1 - 2*x)*...*(1 - n*x). The g.f. for the k-th column of the triangle is (1/(k*(k + 1)))*x^(k-1)*(1/P(k,x) - 1/P(k,-x)) = (x^k)*(x^k*R(k-1,1/x))/((1 - x^2)*(1 - 4*x^2)*...*(1 - k^2*x^2)), where R(n,x) denotes the n-th row polynomial of A164652. (Since the entries of triangle A164652 are integers, it follows that the entries of the present triangle are also integers.) It appears that the matrix product (|A008275|)^-1 * A164652 * A008277 = I_1 + A363041 (direct sum, where I_1 is the 1 X 1 identity matrix). See the Example section. The sequence of row sums of the inverse array begins [1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, ...], and appears to be essentially A129825. EXAMPLE Triangle begins k = 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - n = 1: 1 2: 0 1 3: 1 0 1 4: 0 5 0 1 5: 1 0 15 0 1 6: 0 21 0 35 0 1 7: 1 0 161 0 70 0 1 8: 0 85 0 777 0 126 0 1 9: 1 0 1555 0 2835 0 210 0 1 10: 0 341 0 14575 0 8547 0 330 0 1 ... Matrix product (|A008275|)^-1 * A164652 * A008277 begins / 1 \ /1 \ /1 \ /1 \ |-1 1 | |0 1 | |1 1 | |0 1 | | 1 -3 1 | |1 0 1 | |1 3 1 | = |0 0 1 | |-1 7 -6 1 | |0 5 0 1 | |1 7 6 1 | |0 1 0 1 | | 1 -15 25 -10 1| |8 0 15 0 1| |1 15 25 10 1| |0 0 5 0 1 | | ... | |... | |... | |0 1 0 15 0 1| | | | | | | |... | MAPLE A362041:= (n, k)-> `if`(n-k mod 2 = 0, Stirling2(n+1, k)/binomial(k+1, 2), 0): for n from 1 to 10 do seq(A362041(n, k), k = 1..n) od; PROG (PARI) T(n, k) = if ((n-k) % 2, 0, stirling(n+1, k, 2)/binomial(k+1, 2)); \\ Michel Marcus, May 23 2023 CROSSREFS Row sums give A363042. Cf. A008275, A008277, A164652, A129825. Sequence in context: A085198 A339207 A199916 * A180494 A200653 A058064 Adjacent sequences: A363038 A363039 A363040 * A363042 A363043 A363044 KEYWORD nonn,tabl,easy AUTHOR Peter Bala, May 14 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 04:44 EST 2023. Contains 367468 sequences. (Running on oeis4.)