login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362991
Triangle read by rows. T(n, k) = lcm{1, 2, ..., n+1} * Sum_{j=0..n-k} (-1)^(n-k-j) * j! * Stirling2(n - k, j) / (j + k + 1).
2
1, 1, 1, 1, 2, 2, 0, 2, 3, 3, -2, 2, 9, 12, 12, 0, -2, 3, 8, 10, 10, 10, -10, -9, 24, 50, 60, 60, 0, 20, -30, -8, 50, 90, 105, 105, -84, 84, 18, -96, 0, 150, 245, 280, 280, 0, -84, 126, -24, -90, 18, 147, 224, 252, 252, 2100, -2100, 126, 1344, -600, -870, 343, 1568, 2268, 2520, 2520
OFFSET
0,5
COMMENTS
A variant of the Akiyama-Tanigawa algorithm for the Bernoulli numbers A164555/ A027642.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11324 (rows 0..150 of the triangle, flattened)
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
D. Merlini, R. Sprugnoli, and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
FORMULA
T(n, 0) = lcm(1, 2, ..., n+1) * Bernoulli(n, 1).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 2;
[3] 0, 2, 3, 3;
[4] -2, 2, 9, 12, 12;
[5] 0, -2, 3, 8, 10, 10;
[6] 10, -10, -9, 24, 50, 60, 60;
[7] 0, 20, -30, -8, 50, 90, 105, 105;
[8] -84, 84, 18, -96, 0, 150, 245, 280, 280;
[9] 0, -84, 126, -24, -90, 18, 147, 224, 252, 252;
MAPLE
LCM := n -> ilcm(seq((1 + i), i = 0..n)):
T := (n, k) -> LCM(n)*add((-1)^(n - k - j)*j!*Stirling2(n - k, j)/(j + k + 1), j = 0..n - k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
MATHEMATICA
A362991row[n_]:=Table[LCM@@Range[n+1]Sum[(-1)^(n-k-j)j!StirlingS2[n-k, j]/(j+k+1), {j, 0, n-k}], {k, 0, n}]; Array[A362991row, 15, 0] (* Paolo Xausa, Aug 09 2023 *)
PROG
(SageMath)
def A362991Triangle(size): # 'size' is the number of rows.
A, T, l = [], [], 1
for n in range(size):
A.append(Rational(1/(n + 1)))
for j in range(n, 0, -1):
A[j - 1] = j * (A[j - 1] - A[j])
l = lcm(l, n + 1)
T.append([a * l for a in A])
return T
A362991Triangle(10)
CROSSREFS
Variant: A051714/A051715.
Cf. A362994 (column 0), A002944 (main diagonal), A164555/A027642 (Bernoulli).
Sequence in context: A370885 A072738 A165316 * A215976 A141058 A102706
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, May 16 2023
STATUS
approved