login
A362913
Array of numbers read by upward antidiagonals: leading row lists phi(i), i >= 1 (cf. A000010); the following rows give absolute values of differences of previous row.
1
1, 0, 1, 1, 1, 2, 0, 1, 0, 2, 1, 1, 2, 2, 4, 0, 1, 2, 0, 2, 2, 1, 1, 0, 2, 2, 4, 6, 0, 1, 2, 2, 0, 2, 2, 4, 1, 1, 2, 0, 2, 2, 0, 2, 6, 0, 1, 2, 0, 0, 2, 0, 0, 2, 4, 1, 1, 0, 2, 2, 2, 4, 4, 4, 6, 10, 0, 1, 2, 2, 0, 2, 4, 0, 4, 0, 6, 4, 1, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2, 8, 12, 0, 1, 2, 2
OFFSET
1,6
COMMENTS
The leading entries in the rows (the Gilbreath transform of A000010, cf. A362451) appear to form the period-2 sequence 1,0,1,0,1,0,... Is there a simple proof? This would follow if there was a proof that the Gilbreath transform of |A057000| is the all-1's sequence.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)
N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
EXAMPLE
The array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, ...
0, 1, 0, 2, 2, 4, 2, 2, 2, 6, 6, 8, 6, 2, 0, ...
1, 1, 2, 0, 2, 2, 0, 0, 4, 0, 2, 2, 4, 2, ...
0, 1, 2, 2, 0, 2, 0, 4, 4, 2, 0, 2, 2, ...
1, 1, 0, 2, 2, 2, 4, 0, 2, 2, 2, 0, ...
0, 1, 2, 0, 0, 2, 4, 2, 0, 0, 2, ...
1, 1, 2, 0, 2, 2, 2, 2, 0, 2, ...
0, 1, 2, 2, 0, 0, 0, 2, 2, ...
1, 1, 0, 2, 0, 0, 2, 0, ...
...
The first few antidiagonals are:
1
0, 1
1, 1, 2
0, 1, 0, 2
1, 1, 2, 2, 4
0, 1, 2, 0, 2, 2
1, 1, 0, 2, 2, 4, 6
0, 1, 2, 2, 0, 2, 2, 4
1, 1, 2, 0, 2, 2, 0, 2, 6
0, 1, 2, 0, 0, 2, 0, 0, 2, 4
...
MATHEMATICA
A362913[dmax_]:=With[{d=Reverse[NestList[Abs[Differences[#]]&, EulerPhi[Range[dmax]], dmax-1]]}, Array[Diagonal[d, #]&, dmax, 1-dmax]]; A362913[20] (* Generates 20 antidiagonals *) (* Paolo Xausa, May 10 2023 *)
CROSSREFS
Cf. A000010 (top row of array), A057000 (signed version of second row), A362451,
Sequence in context: A365923 A089650 A085513 * A259965 A117054 A036579
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 09 2023
STATUS
approved