login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362173
a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.
5
1, 1, 1, 4, 17, 51, 481, 3676, 18369, 272917, 3011201, 21058236, 427112401, 6160655359, 55380250017, 1423658493076, 25361574327041, 278603741558601, 8673295084155649, 183914415577719892, 2387417408385462801, 87273239189497636171, 2146479566819857007201
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * [x^n] exp(x + n*x^3/6).
E.g.f.: exp( ( -2*LambertW(-x^3/2) )^(1/3) ) / (1 + LambertW(-x^3/2)).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-2*lambertw(-x^3/2))^(1/3))/(1+lambertw(-x^3/2))))
CROSSREFS
Main diagonal of A362043.
Sequence in context: A228960 A370212 A131339 * A047668 A208658 A092091
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 14 2023
STATUS
approved