login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.
5

%I #29 Apr 16 2023 23:03:33

%S 1,1,1,4,17,51,481,3676,18369,272917,3011201,21058236,427112401,

%T 6160655359,55380250017,1423658493076,25361574327041,278603741558601,

%U 8673295084155649,183914415577719892,2387417408385462801,87273239189497636171,2146479566819857007201

%N a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.

%H Winston de Greef, <a href="/A362173/b362173.txt">Table of n, a(n) for n = 0..441</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F a(n) = n! * [x^n] exp(x + n*x^3/6).

%F E.g.f.: exp( ( -2*LambertW(-x^3/2) )^(1/3) ) / (1 + LambertW(-x^3/2)).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-2*lambertw(-x^3/2))^(1/3))/(1+lambertw(-x^3/2))))

%Y Main diagonal of A362043.

%Y Cf. A277614, A362300, A362301.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Apr 14 2023